«AI, проспись!» — требует цифровая экономика

Технологии AI уверенно встраиваются в бизнес-модели отечественной цифровой экономики и занимают все новые и новые сегменты рынка. Транспорт, логистика, «умная» городская инфраструктура, медицина, агробизнес, промышленные предприятия используют нейросетевые методы и алгоритмы для оптимизации производства товаров и услуг.

Развитие и расширение областей применения технологий AI на базе искусственных нейронных сетей является некоторой данностью, которую давно надо было принять. И с повышением эффективности нейросетей и вычислительных мощностей для их обучения, таким технологиям будут доступны для решения все более сложные задачи.

Разработчики технологий AI решают прежде всего задачу повышения эффективности деятельности человека в результате применения алгоритмов человеко-машинного взаимодействия, за счет автоматизации рутинных операций, позволяющее человеку сконцентрироваться на высокоинтеллектуальном труде, а не замены человека машиной. При этом всегда найдется почва для злоупотреблений – школьники и студенты, за которых нейросети делают домашние задания; псевдоученые, за которых специальные программы генерируют научный текст итак далее. По мере совершенствования архитектур и моделей обучения нейросетей, области применения и решения задач будут дополняться. То есть нахождение простых ошибок кода разработчика, равно как и генерация фрагментов кода, в том числе вредоносного, сейчас вполне решаемые задачи для не программистов.

В качестве примера вполне закономерной эволюции моделей машинного обучения предыдущих поколений, можно привести Deep Learning мультиязыковую модель типа ChatGPT, позволяющая решать широкий спектр в том числе научно-образовательных задач. Российским школьникам понадобилась всего пара недель после появления OpenAI, для того, чтобы начать автоматически генерировать тексты домашних заданий. При этом системы генерации текста, в том числе научного, существуют достаточно давно, однако в этот раз качество текста значительно повысилось.

Генеративно-состязательные нейросетевые модели тоже появились достаточно давно, но широкую известность получили несколько лет назад после начала массового генерирования фейкового видеоконтента – дипфейков. Однако следует отметить, что сегодня мы говорим прежде всего о внедрении систем слабого AI. То есть AI, который может быстро и качественно решать поставленные задачи по созданным человеком алгоритмам, не понимая внутреннего содержания процессов. Сгенерировать научный текст, выполнить домашнее задание – пожалуйста, сделать научное открытие – нет.

При появлении технологий сильного AI, конфигурация цифровой экономики может измениться принципиально, и надо быть готовыми оперативно реагировать на новые технологические вызовы. Занятно, что одним из последних исследовательских трендов изучения сильного AI стала гипотеза о необходимости имитации биологического сна для нейросетей, по аналогии со сном человеческого мозга.

23 января, 2023

Подписаться на новости BIS Journal / Медиа группы Авангард

Подписаться
Введите ваш E-mail

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных

30.12.2025
Трамп взял тайм-аут перед введением пошлин на китайские чипы
30.12.2025
Применение дронов-доставщиков отложили из-за правовых коллизий
30.12.2025
Выдавать зарплату в цифровых рублях начнут системно значимые банки
30.12.2025
MWS Cloud: Чем крупнее бизнес, тем больше он внедряет средства ИБ через «облако»
30.12.2025
ГК «Солар» получила патент на бот-фильтр
29.12.2025
В La Poste «погасли экраны» после крупной DDoS-атаки
29.12.2025
Google забирает из России часть оборудования GGC
29.12.2025
Столичный суд прекратил «дело Telegram и WhatsApp»
29.12.2025
OpenAI пытается не стать «Скайнетом»
29.12.2025
В Нью-Йорке молодёжь станут предупреждать о вреде соцсетей

Стать автором BIS Journal

Поля, обозначенные звездочкой, обязательные для заполнения!

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных