Модель обработки данных для обеспечения кибербезопасности с применением ИИ-технологий

Совместное исследование российских ученых и коллег из КНР посвящено изучению поведения человека в стрессовых ситуациях с помощью методов машинного обучения, которое зависит от психотипа, социализации и множества других факторов.

Абоненты мобильной связи по всему миру теряют десятки миллиардов долларов в год из-за телефонного мошенничества и нежелательных звонков, при этом почти половина абонентов пользуются приложениями для блокировки спама или идентификации входящих звонков, которые продолжают оставаться недостаточно эффективными. Телефонные мошенники выстраивают разговор с потенциальной жертвой, ориентируясь на поведение определенной категории людей. Предварительно человека вводят в состояние острого стресса, при котором его дальнейшим поведением в той или иной степени можно манипулировать методами социальной инженерии. 

В основе предложенного метода лежит модель обработки данных фотоплетизмограмм, полученных с датчика смарт-браслета, следующей конфигурации: Wavelet Transform – 2D – CapsNet. В более ранних работах использовалась модель Windowed Fourier Transform – 2D – CapsNet, однако, вейвлет-преобразования подтвердили более широкие возможности идентификации состояний испытуемых. Учеными подтверждена гипотеза о возможности обучения нейронных сетей на данных фотоплетизмограмм, полученных посредством полиграфа, для дальнейшего применения при идентификации состояний абонента при разговоре. 

При синхронизации умного браслета со смартфоном, предлагаемый метод позволяет в режиме реального времени отслеживать критические изменения состояния абонента телекоммуникационных систем, что дает возможность оперативно в режиме разговора либо принудительно прервать соединение, либо выступить в качестве рекомендательной системы. 

Предложенный метод может найти широкое применение как для обеспечения кибербезопасности, так и в любой другой сфере использования биометрических данных, в том числе в задачах удаленного медицинского мониторинга.

Полный текст исследования опубликован в научном журнале Journal of Computer Virology and Hacking Techniques и доступен по ссылке.

9 января, 2024

Подписаться на новости BIS Journal / Медиа группы Авангард

Подписаться
Введите ваш E-mail

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных

15.12.2025
Форум «АнтиФрод Россия» подвёл итоги борьбы с мошенничеством в 2025 году
15.12.2025
Баланс людей и технологий: ключевые выводы CX Fintech Day
15.12.2025
В США появится госстандарт для LLM
15.12.2025
Экологи против новых дата-центров
15.12.2025
Неясный экономический эффект тормозит развитие ИИ-технологий
12.12.2025
В Европе и США хотят дать «карт-бланш» этичным хакерам
12.12.2025
Бакина: «Пластик» Visa и Mastercard остановился в развитии
12.12.2025
«Они готовы на это, они посчитали свою экономику». ЦОДы определились с аппетитами
12.12.2025
Британская система распознавания лиц страдает ксенофобией?
12.12.2025
Утечка данных из Marquis Software затронула сотни тысяч пользователей

Стать автором BIS Journal

Поля, обозначенные звездочкой, обязательные для заполнения!

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных