Модель обработки данных для обеспечения кибербезопасности с применением ИИ-технологий

Совместное исследование российских ученых и коллег из КНР посвящено изучению поведения человека в стрессовых ситуациях с помощью методов машинного обучения, которое зависит от психотипа, социализации и множества других факторов.

Абоненты мобильной связи по всему миру теряют десятки миллиардов долларов в год из-за телефонного мошенничества и нежелательных звонков, при этом почти половина абонентов пользуются приложениями для блокировки спама или идентификации входящих звонков, которые продолжают оставаться недостаточно эффективными. Телефонные мошенники выстраивают разговор с потенциальной жертвой, ориентируясь на поведение определенной категории людей. Предварительно человека вводят в состояние острого стресса, при котором его дальнейшим поведением в той или иной степени можно манипулировать методами социальной инженерии. 

В основе предложенного метода лежит модель обработки данных фотоплетизмограмм, полученных с датчика смарт-браслета, следующей конфигурации: Wavelet Transform – 2D – CapsNet. В более ранних работах использовалась модель Windowed Fourier Transform – 2D – CapsNet, однако, вейвлет-преобразования подтвердили более широкие возможности идентификации состояний испытуемых. Учеными подтверждена гипотеза о возможности обучения нейронных сетей на данных фотоплетизмограмм, полученных посредством полиграфа, для дальнейшего применения при идентификации состояний абонента при разговоре. 

При синхронизации умного браслета со смартфоном, предлагаемый метод позволяет в режиме реального времени отслеживать критические изменения состояния абонента телекоммуникационных систем, что дает возможность оперативно в режиме разговора либо принудительно прервать соединение, либо выступить в качестве рекомендательной системы. 

Предложенный метод может найти широкое применение как для обеспечения кибербезопасности, так и в любой другой сфере использования биометрических данных, в том числе в задачах удаленного медицинского мониторинга.

Полный текст исследования опубликован в научном журнале Journal of Computer Virology and Hacking Techniques и доступен по ссылке.

9 января, 2024

Подписаться на новости BIS Journal / Медиа группы Авангард

Подписаться
Введите ваш E-mail

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных

05.12.2025
Топ-менеджеров больше всего тревожат дезинформация и киберугрозы
05.12.2025
Россияне стали реже отменять самозапрет на кредиты
05.12.2025
Банк России снимет лимиты на перевод средств за границу
05.12.2025
Минцифры представило третий шатдаун-сет
04.12.2025
Мнение: РКН пытается изменить пользовательские привычки в пользу доверенных российских сервисов
04.12.2025
Хакеры взломали 120 тысяч камер ради порноконтента
04.12.2025
Roblox, FaceTime… кто завтра?
04.12.2025
А следующий — Snapchat (но не Telegram?)
04.12.2025
«1С-Битрикс» пригласила багхантеров для участия в публичной программе
04.12.2025
Тематические акценты XXVI Банковского форума iFin-2026

Стать автором BIS Journal

Поля, обозначенные звездочкой, обязательные для заполнения!

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных