Модель обработки данных для обеспечения кибербезопасности с применением ИИ-технологий

Совместное исследование российских ученых и коллег из КНР посвящено изучению поведения человека в стрессовых ситуациях с помощью методов машинного обучения, которое зависит от психотипа, социализации и множества других факторов.

Абоненты мобильной связи по всему миру теряют десятки миллиардов долларов в год из-за телефонного мошенничества и нежелательных звонков, при этом почти половина абонентов пользуются приложениями для блокировки спама или идентификации входящих звонков, которые продолжают оставаться недостаточно эффективными. Телефонные мошенники выстраивают разговор с потенциальной жертвой, ориентируясь на поведение определенной категории людей. Предварительно человека вводят в состояние острого стресса, при котором его дальнейшим поведением в той или иной степени можно манипулировать методами социальной инженерии. 

В основе предложенного метода лежит модель обработки данных фотоплетизмограмм, полученных с датчика смарт-браслета, следующей конфигурации: Wavelet Transform – 2D – CapsNet. В более ранних работах использовалась модель Windowed Fourier Transform – 2D – CapsNet, однако, вейвлет-преобразования подтвердили более широкие возможности идентификации состояний испытуемых. Учеными подтверждена гипотеза о возможности обучения нейронных сетей на данных фотоплетизмограмм, полученных посредством полиграфа, для дальнейшего применения при идентификации состояний абонента при разговоре. 

При синхронизации умного браслета со смартфоном, предлагаемый метод позволяет в режиме реального времени отслеживать критические изменения состояния абонента телекоммуникационных систем, что дает возможность оперативно в режиме разговора либо принудительно прервать соединение, либо выступить в качестве рекомендательной системы. 

Предложенный метод может найти широкое применение как для обеспечения кибербезопасности, так и в любой другой сфере использования биометрических данных, в том числе в задачах удаленного медицинского мониторинга.

Полный текст исследования опубликован в научном журнале Journal of Computer Virology and Hacking Techniques и доступен по ссылке.

9 января, 2024

Подписаться на новости BIS Journal / Медиа группы Авангард

Подписаться
Введите ваш E-mail

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных

15.09.2025
Банк России — о необоснованной блокировке счетов физлиц
15.09.2025
С октября в банковских приложениях появится новая антифрод-ступень
15.09.2025
Массовые обзвоны без согласия абонентов запрещены (но не всем)
15.09.2025
CISA запускает дорожную карту программы «Общие уязвимости и риски»
15.09.2025
Пользователей ChatGPT с «типично женскими» никами стало больше, чем с «типично мужскими»
12.09.2025
Албания доверила госзакупки искусственному интеллекту
12.09.2025
На «Госуслугах» теперь можно запретить себе SIM-карту
12.09.2025
Даркнет сам приходит к «Максу»?
12.09.2025
Половина россиян не одобряет блокировку звонков в мессенджерах
12.09.2025
Злоупотребление удалённым доступом — предвестник появления вымогателей

Стать автором BIS Journal

Поля, обозначенные звездочкой, обязательные для заполнения!

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных