Модель обработки данных для обеспечения кибербезопасности с применением ИИ-технологий

Совместное исследование российских ученых и коллег из КНР посвящено изучению поведения человека в стрессовых ситуациях с помощью методов машинного обучения, которое зависит от психотипа, социализации и множества других факторов.

Абоненты мобильной связи по всему миру теряют десятки миллиардов долларов в год из-за телефонного мошенничества и нежелательных звонков, при этом почти половина абонентов пользуются приложениями для блокировки спама или идентификации входящих звонков, которые продолжают оставаться недостаточно эффективными. Телефонные мошенники выстраивают разговор с потенциальной жертвой, ориентируясь на поведение определенной категории людей. Предварительно человека вводят в состояние острого стресса, при котором его дальнейшим поведением в той или иной степени можно манипулировать методами социальной инженерии. 

В основе предложенного метода лежит модель обработки данных фотоплетизмограмм, полученных с датчика смарт-браслета, следующей конфигурации: Wavelet Transform – 2D – CapsNet. В более ранних работах использовалась модель Windowed Fourier Transform – 2D – CapsNet, однако, вейвлет-преобразования подтвердили более широкие возможности идентификации состояний испытуемых. Учеными подтверждена гипотеза о возможности обучения нейронных сетей на данных фотоплетизмограмм, полученных посредством полиграфа, для дальнейшего применения при идентификации состояний абонента при разговоре. 

При синхронизации умного браслета со смартфоном, предлагаемый метод позволяет в режиме реального времени отслеживать критические изменения состояния абонента телекоммуникационных систем, что дает возможность оперативно в режиме разговора либо принудительно прервать соединение, либо выступить в качестве рекомендательной системы. 

Предложенный метод может найти широкое применение как для обеспечения кибербезопасности, так и в любой другой сфере использования биометрических данных, в том числе в задачах удаленного медицинского мониторинга.

Полный текст исследования опубликован в научном журнале Journal of Computer Virology and Hacking Techniques и доступен по ссылке.

9 января, 2024

Подписаться на новости BIS Journal / Медиа группы Авангард

Подписаться
Введите ваш E-mail

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных

04.07.2025
Конгрессмен рассказал агентам ФБР про кибербез (не наоборот)
04.07.2025
«Это ускорит развитие национальной платёжной инфраструктуры»
04.07.2025
«Пар»? «Ростелеком» строит свой Steam
04.07.2025
«Не будет никакой остановки». Европейский AI Act — на марше
04.07.2025
В России всё же создадут базу биометрии мошенников
03.07.2025
В Госдуме продолжают намекать на преимущества импортозамещения
03.07.2025
Котята отрастили щупальца. Kraken целится в Apple издалека?
03.07.2025
DLBI: До конца года стилеры могут парализовать поиск «удалёнки» в РФ
03.07.2025
Международный уголовный суд подвергается атакам хакеров
03.07.2025
17% компаний выбирает ноутбуки с предустановленными отечественными ОС

Стать автором BIS Journal

Поля, обозначенные звездочкой, обязательные для заполнения!

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных