Sustainability: беспилотные транспортные средства будут безопасными в любую погоду

Российскими учеными совместно с индийскими коллегами улучшен алгоритм управления беспилотными транспортными средствами в условиях недостаточной видимости на основе метода глубокого обучения для распознавания и классификации изображений (Deep Learning Method for Recognition and Classification of Images). Исследование было опубликовано в научном журнале Sustainability.

Устойчивое функционирование транспортной системы требует решения задач идентификации и классификации участников дорожного движения с целью прогнозирования вероятности аварий и предотвращения нештатных или аварийных ситуаций. Появление беспилотных автомобилей на городских магистралях значительно увеличивает риски подобных событий. Для повышения безопасности дорожного движения используются интеллектуальные транспортные системы, встроенные системы компьютерного зрения, системы видеонаблюдения, фоторадарные системы. Основной проблемой является распознавание и классификация объектов и критических событий в сложных погодных условиях. Например, капли воды, снег, пыль и грязь на объективе камеры делают изображения менее точными при идентификации объектов, распознавании номерных знаков, определении траектории движения автомобиля и т. д. Часть изображения накладывается, искажается или размыта.

Ученые Факультета информационных технологий и анализа больших данных Финансового университета при Правительстве Российской Федерации предложили способ повышения точности идентификации объектов за счет использования оператора Кэнни для исключения из рассмотрения поврежденных участков изображения за счет захвата четких частей объектов и игнорирования размытых. Дальнейшей обработке подвергаются только те участки изображения, где этот оператор обнаружил границы объектов. Для классификации изображений по оставшимся целым частям предлагается использовать комбинированный подход, включающий метод гистограммно-ориентированного градиента (HOG), набор визуальных слов (BoVW) и нейронную сеть обратного распространения (BPNN). Для бинарной классификации изображений поврежденных объектов этот метод показал значительное преимущество перед классическим методом сверточных нейронных сетей (СНС) (точности 79 и 65 % соответственно). Представлены результаты многоклассовой классификации объектов распознавания на основе поврежденных изображений с разбросом точности от 71 до 86%. Рецензентами отмечен важный практический смысл проведенного исследования.

Применение систем компьютерного зрения в сельском хозяйстве описано в исследовании профессора Финансового университета Владимира Соловьева в журнале Symmetry.

В исследовании приняли участие ученые из Пензенского государственного университета (Россия), Rajkiya Engineering College (Индия).

17 мая, 2022

Подписаться на новости BIS Journal / Медиа группы Авангард

Подписаться
Введите ваш E-mail

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных

19.12.2025
НСПК — о едином пространстве для проведения транзакций
19.12.2025
Пентагон видит в ISACA глобальный орган по контролю за ИБ-стандартами
19.12.2025
«Слишком жёсткие правила могут замедлить темпы внедрения ИИ»
19.12.2025
«Здесь востребованы люди, которые умеют совмещать системное мышление с прикладной инженерией»
19.12.2025
NCSC стремится внедрить передовые методы защиты в цепочки поставок
18.12.2025
Эксперт: Продление жизни карт «Мир» грозит ростом скамерской активности
18.12.2025
ИИ-разработчики сами боятся утратить навыки из-за засилья нейросетей
18.12.2025
Max берёт возможный максимум
18.12.2025
ЛК: Геймерам угрожает новый инфокрад
18.12.2025
NCSC будет бороться со скамерами на основе «иллюзии обмана»

Стать автором BIS Journal

Поля, обозначенные звездочкой, обязательные для заполнения!

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных