«Большие языковые модели трансформируют все новые индустрии»

BIS Journal №3(54)2024

30 августа, 2024

«Большие языковые модели трансформируют все новые индустрии»

Крупный бизнес активно внедряет речевые технологии для улучшения качества коммуникаций с клиентами, импортозамещения и сокращения расходов на содержание контактных центров. Речевая аналитика, диалоговые ассистенты уже доказали эффективность в телекоме, банковской сфере.

Например, в контактном центре «Мегафон» речевая аналитика позволила переквалифицировать 20% специалистов контроля качества в коучей при снижении количества претензий на 40%.

Появление больших языковых моделей (LLM), таких как GigaChat, и совмещение их с традиционными алгоритмами машинного обучения позволило нам предоставить бизнесу новый функционал: суммаризацию содержания и тематик диалогов, оценку их результативности и тональности.

Теперь все данные агрегируются, расшифровываются и анализируются в онлайн-режиме прямо в момент обращения клиента. Это помогает оператору давать более точные ответы на запросы, а также прогнозировать изменение клиентских предпочтений. Новое решение SpeechXplore — AI-решение для аналитики и управления коммуникациями в контактных центрах — фактически даёт новый уровень управления клиентским опытом.

Однако в целом влияние новых нейросетевых подходов гораздо более значительное. Можно утверждать, что большие языковые модели трансформируют все новые индустрии, и одна из них — промышленность. Важно, что LLM могут помочь в создании виртуальных ассистентов без ручного обучения, а также персональных Co-pilots — AI-помощников для целого набора различных специализаций. В настоящее время в компании СИБУР выполняется проект внедрения больших языковых моделей в промышленности — один из первых в стране. В нём объединены научные разработки ЦРТ в области обработки естественного языка (NLU) и возможности нейросетевой модели Сбер GigaChat. Уже созданы следующие решения.

  • AI-ассистент инженера-диагноста: инженер может вести диалог с помощником о причинах неисправности оборудования. В ходе разговора сотрудник описывает в текстовом виде аномалии в работе оборудования, а обученный AI-помощник даёт релевантный ответ или формулирует гипотезы о причинах нехарактерного поведения агрегатов, а также предлагает возможные варианты устранения неисправности.
  • AI-советчик для оптимизации закупки материально-технических ресурсов: искусственный интеллект позволяет перейти от статичных записей номенклатурных позиций к параметрическим карточкам. В результате система будет подбирать допустимые аналоги, имеющие преимущества по цене, качеству и доступности.
  • AI-ассистент финансиста: агрегируя данные компании, он может отвечать на вопросы о динамике ключевых факторов, которые влияют на маржинальный доход.

Возможности современных технологий впечатляют, а их синергия с большими языковыми моделями позволит в будущем добиться ещё более значимых технологических прорывов в самых разных индустриях.

Стать автором BIS Journal

Смотрите также

Подписаться на новости BIS Journal / Медиа группы Авангард

Подписаться
Введите ваш E-mail

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных

31.10.2025
Европол призывает объединиться в борьбе со спуфингом
31.10.2025
Взлом JLR может привести к краху экономики Британии (?)
31.10.2025
Банк ДОМ.РФ зафиксировал рост случаев мошеннических действий против миллениалов
31.10.2025
Роскомнадзор хочет демонтировать институт согласий
31.10.2025
Регистрация новых пользователей в Telegram и WhatsApp ограничена
30.10.2025
«К2Тех»: Бесперебойная связь остаётся приоритетом для держателей ЦОДов
30.10.2025
Бизнес обяжут импортозаместить ПО?
30.10.2025
«Сбер» готов делиться технологиями автоматического выявления дипфейков
30.10.2025
В Крыму пропали Telegram и WhatsApp
30.10.2025
Возвращение в эру голосовых вызовов потребует вложений в инфраструктуру

Стать автором BIS Journal

Поля, обозначенные звездочкой, обязательные для заполнения!

Отправляя данную форму вы соглашаетесь с политикой конфиденциальности персональных данных